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Carboxylic acids and derivatives (e.g., esters) are valuable
commodity chemicals and useful synthetic building blocks. A well
established approach for carboxylic acids synthesis is the transition
metal-catalyzed carbonylation of organic substrates containing
C-halides and/or CdC bonds.1 However, the catalytic carbony-
lation reaction is limited by (1) the necessity to handle hazardous
gas often in high pressure and (2) the use of prefunctionalized
substrates. From a standpoint of atom economy, direct function-
alization of C-H bonds to C-CO2R bonds is a highly desirable
alternative.2 To this end, Orito and co-workers previously reported
Pd(OAc)2-catalyzed direct carbonylation of aromatic amines for
synthesis of five- and six-membered benzolactams.3,4 However,
problems in regiocontrol of the carbonylation reaction remain to
be addressed.

To achieve selective C-H bond functionalization, significant
advances have been made by transition metal (Ru, Rh, Re, Pd)-
mediated C-H bond cyclometallation assisted by directing func-
tional groups.2d Notably, Pd(OAc)2-catalyzed regioselectiveortho-
C-H bond oxidation leading to C-C (aryl)2a,5 and C-heteroatom
bond formations6 is attracting widespread attention. Although carbon
monoxide insertion to palladacycles has been thoroughly investi-
gated,7 developing catalytic protocols forortho-selective C-H bond
carbonylation based on this chemistry is exceedingly difficult
because the depalladation process is often complicated by reduction
of Pd(II) to Pd(0) under the CO atmosphere. Herein we disclose a
Pd-catalyzed protocol forortho-selective ethoxycarbonylation of
aromatic C-H bonds using diethyl azodicarboxylate (DEAD)
coupled with inexpensive oxidizing agents.8 This transformation
is operated without the use of carbon monoxide and protection
against air/moisture.

Initially we examined dialkyl azodicarboxylates as a potential
reagent for C-H amination reactions.9 When palladacycle5a
reacted with diethyl azodicarboxylate (DEAD, 1.5 equiv) in 1,2-
dichloroethane (DCE) at 100°C (Scheme 1), ester2a was formed
in 83% yield accompanied with Pd black formation. Analogous
reaction of5b with DEAD furnished2b in 80% yield. In both cases,
the anticipated hydrazides were not formed. The structures of2a
and2b have been confirmed by X-ray crystallography.10

Having established the stoichiometric reaction of the pallada-
cycles with DEAD, we turned to develop a catalytic reaction of
2-arylpyridines with DEAD using appropriate oxidizing agents. To
begin, treating1a with Pd(OAc)2 (5 mol %), DEAD (2 equiv) and
Cu(OAc)2 (4 equiv) in DCE at 100°C for 4 h afforded2a in 44%
yield with 48% substrate conversion (Table 1, entry 1). After several
trials, a protocol involving batchwise addition of DEAD (4× 0.5
equiv) and 10 mol % of Cu(OAc)2 was found to give better results;
up to 82% substrate conversion with 88% product yield were
achieved over 12 h (entry 2).11 Yet, no further improvement in

product yield was obtained with Cu(OAc)2 as the oxidant despite
several protocol changes.

In a hope to achieve better substrate conversion and product
yield, we examined other oxidants for the catalytic reaction.
Gratifyingly, Oxone was found to be an effective oxidant for the
Pd-catalyzed ethoxycarbonylation reaction. Treatment of1a (0.5
mmol) with Oxone (3× 1 equiv), DEAD (4× 0.5 equiv) and Pd-
(OAc)2 (5 mol %) in DCE at 100°C for 6 h,2a was obtained in
91% yield with complete substrate consumption (Table 1, entry
3). Employing ammonium cerium(IV) nitrate (CAN) and benzo-
quinone (BQ) as oxidants resulted in<5% product yield (entries
6-7). Other solvents such as DMF, 1,4-dioxane, MeOH, and
acetone are less effective for this Pd-catalyzed reaction (entries
9-12).

The scope of the Pd-catalyzed ethoxycarbonylation reaction is
depicted in Table 2. Pyrrolidinone1h and acetylindoline1i were
converted to the corresponding esters in 84 and 80% yields under
the Pd-catalyzed conditions (entries 8 and 9). For the direct
carbonylation of the sp3 C-H bond, the reaction of 8-methylquino-

Scheme 1. Reaction of Palladacycles with DEAD

Table 1. Optimizing Reaction Conditionsa

entry oxidantb solvent time/h
%

conversion
%

yieldc

1 Cu(OAc)2 4 equiv DCE 4 48 44
2 Cu(OAc)2 10 mol % DCE 12 82 88
3 Oxone DCE 6 100 91
4 K2S2O8 DCE 6 83 64
5 TBHP DCE 6 88 88
6 CAN DCE 6 72 n.d.
7 BQ DCE 6 33 3
8d Oxone DCE 6 33 48
9 Oxone DMF 6 83 72

10 Oxone 1,4-dioxane 6 73 48
11 Oxone MeOH 6 65 32
12 Oxone acetone 6 51 22

a Reaction conditions:1a (0.5 mmol), DEAD (4× 0.5 equiv/h for entries
3-12). b Batch-wise addition of oxidant (3× 1 equiv/2h) for entries 3-12.
c Conversion and product yield determined by GC/FID, the percentage yield
based on conversion.d Reaction temperature: 60°C.
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line (1j) with DEAD, Oxone, and Pd(OAc)2 (5 mol %) gave2j
inonly 23% yield (61% conversion). However, when Cu(OAc)2 (10
mol %) was employed as the oxidant,2j was obtained in 83% yield
(47% conversion, entry 10). Yet, using more Cu(OAc)2 (2 equiv)
did not give higher yield and substrate conversion.

Facile transformation ofO-methyl oximes of acetophenones to
their ortho-esters was achieved using DEAD and K2S2O8 (3 × 1
equiv) as oxidant (entries 11-22). In this reaction, functional groups
such as Br, MeO, and CHO were all tolerated (entries 3, 5, 14, 20,
21). With meta-substituted substrates, the 2,4-regioisomers were
obtained selectively (entries 4, 12-15, 20). The observed selectivity
is linked to the regioselectivity of the cyclopalladation step12 which
is known to be steric sensitive.6c,7By reacting Pd(OAc)2 with 2-(3′-
methoxyphenyl)pyridine (1e), we obtained palladacycle5c (X-ray
structure characterized) as a single regioisomer in 90% yield. Other
regioisomers were not detected by1H NMR analysis of the reaction
mixture. As anticipated,5c reacted with DEAD to give2e
exclusively in 85% yield.10

The Pd-catalyzed reaction ofO-methyl oxime benzaldehyde (3h)
with DEAD and K2S2O8 furnished a mixture of mono- (27%) and
diesters (52%; entry 18). Nevertheless, the reactions employing
oximes of substituted benzaldehydes produced monoesters exclu-

sively in good yields (entries 19-22). Under this condition, ketones
(e.g., acetophenone) and esters (e.g., ethyl benzoate) were ineffective
substrates for the ethoxycarbonylation, whereas the reaction with
N-(p-methoxyphenyl)benzyladehyde imines gave<15% conversion
and<50% product yield.10

We found that radical scavengers such as galvinoxyl would exert
detrimental effect (<40% ester formation) to the “5a + DEAD”
reaction,5h indicative of the radical intermediates. Unlike DEAD,
other azodicarboxylates [ROC(O)NdN(O)COR; R) benzyl,tert-
butyl, trichloromethyl, dipiperidine] are poor reagents for converting
5a to the product esters/amides (<13% yield).13 When5a reacted
with an equimolar mixture of DEAD and dibenzyl azodicarboxylate,
2a and the benzyl ester were formed in 62 and 9% yield,
respectively. Whereas the DEAD was found to be completely
consumed,∼25% dibenzyl azodicarboxylate was recovered un-
changed.13 For the reaction of5a with dibenzyl azodicarboxylate,
dibenzyl carbonate was obtained in 17% yield from a complicated
reaction mixture.14 We believed that thermal decomposition of
the azodicarboxylate would generate benzyloxyacyl radical,15,16

some of which would undergo decarbonylation to form benzyloxy

Table 2. Pd-Catalyzed Ethoxycarbonylation of Aromatic C-H Bonds

a Reaction conditions: substrate (0.5 mmol), DEAD (4× 0.5 equiv), Pd(OAc)2 (5 mol %), DCE (1 mL), 100°C for 6 h. b Oxidant: Oxone (3× 1 equiv).
c Oxidant: 10 mol % of Cu(OAc)2. d Oxidant: K2S2O8 (3 × 1 equiv).e The percentage yield based on conversion.f With 3 equiv of Oxone as oxidant: yield
for 2j ) 23% based on 61% conversion.g With 3 equiv of Oxone as oxidant: yield of4a ) 35%,ortho-hydroxylation product) 56%. h Diester formation
) 52% yield. i DEAD (6 × 0.5 equiv), K2S2O8 (5 × 1 equiv) for 10 h.
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radical. As such, dibenzyl carbonate was produced by combin-
ing the benzyloxyacyl radicals with the benzyloxy radical (Scheme
2).

On the basis of the above findings, the catalytic reaction should
be initiated by cyclopalladation of theortho-C-H bond to form a
palladacycle. The palladacycle subsequently reacts with the ethoxy-
acyl radicals, generated from thermal decomposition of DEAD,
to afford the product esters (Scheme 3). At this stage, the mechan-
ism for the radical insertion reaction to palladacycles remains
unclear.17 Indeed, systemic mechanistic studies on radical addition
to organometallic complexes are sparse in the literature.17,18 A
plausible pathway for the radical insertion to Pd-C bond would
be via formation of Pd(IV) species19 especially under oxidizing
conditions,5h,g,6hand that would be a subject for further investiga-
tion.
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Scheme 2. Reaction of 5a with Dibenzyl Azodicarboxylate

Scheme 3. Proposed Mechanism
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